EconPapers    
Economics at your fingertips  
 

Dynamic quantitative assessment of multiple uncertainty sources in future hydropower generation prediction of cascade reservoirs with hydrological variations

Shuai Zhou, Yimin Wang, Hui Su, Jianxia Chang, Qiang Huang and Ziyan Li

Energy, 2024, vol. 299, issue C

Abstract: Hydropower is the dominant renewable energy source, which can significantly reduce carbon dioxide emissions while providing electric energy. It is a crucial way to achieve the dual-carbon goal of carbon peak and carbon neutrality. However, climate change inevitably threatens hydropower, either directly or indirectly. Global climate models (GCMs) and hydrological models (HMs) under different representative concentration pathways (RCPs) have been combined to investigate future hydropower generation responses to climate change. The contribution of multiple uncertainty sources to multi-scale hydropower generation uncertainties with hydrological variations remains unclear. Therefore, to address the above challenge, a three-step framework was proposed in this paper: (1) predicting future inflows to reservoirs using three HMs (HBV, SWAT and XAJ) with different structures driven by six GCMs (BNU-ESM, GFDL-ESM2G, GFDL-ESM2M, CanESM2, MIROC-ESM-CHEM and CSIRO-MK3-6-0) under three RCPs (i.e., RCP2.6, RCP4.5 and RCP8.5); (2) diagnosing future hydrological conditions using the Comprehensive Differential Split-sample Test; (3) predicting future hydropower generation of cascade reservoirs by developing a cascade hydropower generation model and dynamically quantifying the contribution of multiple uncertainty sources to multi-scale hydropower generation uncertainties with hydrological conditions based on the variance decomposition method through subsampling. The results indicate that GCMs, HMs, climate emission scenarios and their interactions significantly impacted the uncertainty of hydropower generation with hydrological variations. In the flood season, the relative contributions of GCMs and HMs were the largest, accounting for about 40 %. The interaction effects of multiple uncertainty sources gradually increased before, after and during the non-flood season, with its relative contribution accounting for about 36 %. These findings can facilitate the active response to the new challenges of strategic hydropower energy development under climate change, reducing the losses caused by climate change.

Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224012209
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:299:y:2024:i:c:s0360544224012209

DOI: 10.1016/j.energy.2024.131447

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-05-25
Handle: RePEc:eee:energy:v:299:y:2024:i:c:s0360544224012209