Thermal performance of packed-bed latent heat storage tank integrated with flat-plate collectors under intermittent loads of building heating
Jiatao Liu and
Shilei Lu
Energy, 2024, vol. 299, issue C
Abstract:
Packed-bed latent heat storage (PBLHS) system has been widely studied in the solar energy application area due to its properties of solving the time-space mismatch of energy supply and demand. The paper delves into the cyclic thermal performance of PBLHS tanks, seamlessly integrated with flat-plate collectors, to manage building heat loads effectively. A 1D transient mathematic model of PBLHS integrated with the solar collector for a building is established using MATLAB which is validated with the experimental results from the literature. Based on this model, the effect of different sizes, flow rates, inlet temperature thresholds and different heating months are discussed. The results show that: 1). Building heat load can have a significant influence on the thermal performance of the PBLHS system. 2). The optimal size of the tank for a 96 m2 house is 1.0*1.0 m and the optimal flow rate is 0.05 kg/s 3). The weather data can significantly affect the thermal performance of PBLHS, the storage tank heating durations for one week in different heating months are 108.4h, 73.6h,70.8h and 81.7h. These insights are pivotal for the optimal design of PBLHS tanks, paving the way for more efficient building heating solutions.
Keywords: Thermal energy storage (TES); Latent thermal energy storage; Phase change material (PCM); Solar energy; Building heat load; Building energy (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224012362
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:299:y:2024:i:c:s0360544224012362
DOI: 10.1016/j.energy.2024.131463
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().