EconPapers    
Economics at your fingertips  
 

Improving multi-site photovoltaic forecasting with relevance amplification: DeepFEDformer-based approach

Yan Wen, Su Pan, Xinxin Li, Zibo Li and Wuzhenghong Wen

Energy, 2024, vol. 299, issue C

Abstract: The present research on photovoltaic (PV) forecasting is devoted to the use of spatial information about PV sites to improve the accuracy of the models, but most of the models have to increase their network complexity to learn the spatial dependence. In this paper, we propose to take advantage of the known geographic location information of PV sites and embed them directly into the input information of Decoder, which makes it easier for the model to focus its attention. We refer to this process as relevance amplification. Based on this, this paper proposes Relevance Amplification based DeepFEDformer (RAD-FEDformer), where DeepFEDformer adds multiple Multi-Layer Perceptron (MLP) layers to FEDformer to improve the perception of deep features. The Relevance Amplification Module (RAM) is designed to receive geographic correlation information as a way to enhance its influence on the Seasonality component of the Decoder input and improve the performance of the attention mechanism in the model. Using the power generation data from PV plants distributed in 11 regions of Belgium as our case study, we evaluated the performance of RAD-FEDformer in predicting PV data at 48/96/192 time steps into the future for each plant. Compared to other Transformer family models, RAD-FEDformer achieved SOTA results by demonstrating significant R2 improvements of 16.70%, 51.45%, and 23.50% over FEDformer, along with an average MSE reduction of 16.9%. We designed Ablation Experiments to validate and compare the performance of MLPs of different sizes based on the ETTm1 dataset and discussed the performance of RAM and its effect on the attention mechanism based on the PV dataset. The results show that our model enhances the performance of the attention mechanism in Multi-Site PV prediction scenarios, and conclude that the optimization of RAM is more effective in longer sequence predictions.

Keywords: Photovoltaic power forecasting; Multi-site forecasting; Relevance amplification; DeepFEDformer; Fourier enhanced (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224012520
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:299:y:2024:i:c:s0360544224012520

DOI: 10.1016/j.energy.2024.131479

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-05-17
Handle: RePEc:eee:energy:v:299:y:2024:i:c:s0360544224012520