EconPapers    
Economics at your fingertips  
 

Thermodynamic optimization as an effective tool to design solar heating systems

E. Torres-Reyes, J.J. Navarrete-González and J.G. Cervantes-de Gortari

Energy, 2004, vol. 29, issue 12, 2305-2315

Abstract: Solar to thermal energy conversion was studied in order to optimize the process in a flat-plate solar collector. Two generalized relationships were used: one based on the optimum temperature of the working fluid and the other one based on the optimum path flow length. These parameters were obtained previously by means of the maximization of the exergy flow number. These optimal parameters are related to the finite conditions of operation and are considered for finite size systems, including environmental conditions variations and the irreversibilities due to pressure drop of the working fluid in the solar devices. The design procedure was applied to determine the collection surface distribution for different arrangements, in order to reach a heating load at fixed operation conditions given by the Stanton number, friction factor and collector efficiency factor.

Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544204001318
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:29:y:2004:i:12:p:2305-2315

DOI: 10.1016/j.energy.2004.03.052

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:29:y:2004:i:12:p:2305-2315