A thermodynamic analysis of a novel high efficiency reciprocating internal combustion engine—the isoengine
M.W. Coney,
C. Linnemann and
H.S. Abdallah
Energy, 2004, vol. 29, issue 12, 2585-2600
Abstract:
A novel concept for a high efficiency reciprocating internal combustion engine (the isoengine) is described and its cycle is analysed. The highly turbocharged engine configuration, which is intended primarily for on-site and distributed power generation, has a predicted electrical output of 7.3 MW. It has the option for co-generation of up to 3.2 MW of hot water at 95 °C supply temperature. The maximum net electrical plant efficiency is predicted to be about 60% on diesel fuel and 58% on natural gas. The key to the high electrical efficiency is the quasi-isothermal compression of the combustion air in cylinders, which are separate from the power cylinders. This achieves a significant saving in compression work and allows the recovery of waste heat back into the cycle, mainly from the exhaust gas by means of a recuperator. The construction of a first 3 MWe prototype isoengine has been completed and its testing has begun. Relevant test results are expected in the near future.
Date: 2004
References: View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544204002920
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:29:y:2004:i:12:p:2585-2600
DOI: 10.1016/j.energy.2004.05.014
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().