EconPapers    
Economics at your fingertips  
 

Thermo-characterization of power systems components: a tool to diagnose their malfunctions

Alejandro Zaleta-Aguilar, Javier Royo, Victor H. Rangel and Ernestina Torres-Reyes

Energy, 2004, vol. 29, issue 3, 361-377

Abstract: Concepts on thermodynamic characterization of power system components are presented in this paper. The aim of this work is to evaluate and diagnose the actual operating condition for existing power plant components. What is more, a Reference Performance State (RPS) for power system components which uses the parameters defined as the enthalpy change, ω, the entropy change, σ and the Mass Flow Ratio design, MFR is put forward. Design information and simulation will help to determine the RPS for each component operating without any malfunction. The RPS can be used to compare, to evaluate and to diagnose the actual operating condition of the plant components so as to detect its possible malfunction. A simulated example of a 105 MW power plant is presented herein so that thermo-characterization of steam turbines, a condenser, a heat exchanger, and a pump is illustrated. The induced and intrinsic component malfunction effects on the RPS are also presented. Their effects are related to the RPS, thereby opening the possibility to apply methodologies to any internal decay and/or induced malfunctions that could appear in an operating component, in terms of the heat rate impact.

Date: 2004
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544203002561
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:29:y:2004:i:3:p:361-377

DOI: 10.1016/j.energy.2003.10.004

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:29:y:2004:i:3:p:361-377