EconPapers    
Economics at your fingertips  
 

Experimental evaluation of a non-isothermal high temperature solar particle receiver

Rudi Bertocchi, Jacob Karni and Abraham Kribus

Energy, 2004, vol. 29, issue 5, 687-700

Abstract: The experimental evaluation of a solar particle receiver is reported. Concentrated irradiation was converted into thermal energy in a gas flow by a cloud of radiation absorbing sub-micrometre carbon particles. Average solar concentration was 2500 on an 80 mm diameter aperture. Cloud particle mass fractions were in the range of 0.2–0.5%. Exit gas temperatures exceeding 2100 K were measured with nitrogen, 1900 K with CO2, and 2000 K with air, which is 1000 K higher than previously reported using a particle receiver. The air heating tests reveal that the particle/gas heat transfer exceeded the oxygen/carbon oxidation rate up to 2000 K. A carbon particle mass fraction of less than 0.5% in the gas stream ensures that the heated air contains only a negligible amount of CO2 and NOx. The axial receiver cavity wall temperature increased with distance from the aperture, peaking at 60% of the total cavity length, and then slightly decreasing towards the exit plane. At steady conditions, the wall temperatures in the gas exit plane were at least 100 K cooler than the gas’s, alleviating structural constraints associated with conventional volumetric receivers. Estimated radiation to thermal energy conversion efficiencies surpassed 80% at the highest mass flow rates. The receiver accumulated over 12 net hours at temperatures above 1700 K without any major failures.

Date: 2004
References: View complete reference list from CitEc
Citations: View citations in EconPapers (18)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544203001774
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:29:y:2004:i:5:p:687-700

DOI: 10.1016/j.energy.2003.07.001

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:29:y:2004:i:5:p:687-700