Prospects for carbon capture and sequestration technologies assuming their technological learning
Keywan Riahi,
Edward S. Rubin and
Leo Schrattenholzer
Energy, 2004, vol. 29, issue 9, 1309-1318
Abstract:
This paper analyzes potentials of carbon capture and sequestration technologies (CCS) in a set of long-term energy-economic-environmental scenarios based on alternative assumptions for technological progress of CCS. In order to get a reasonable guide to future technological progress in managing CO2 emissions, we review past experience in controlling sulfur dioxide emissions (SO2) from power plants. By doing so, we quantify a “learning curve” for CCS, which describes the relationship between the improvement of costs due to accumulation of experience in CCS construction. We incorporate the learning curve into the energy modeling framework MESSAGE-MACRO and develop greenhouse gas emissions scenarios of economic, demographic, and energy demand development, where alternative policy cases lead to the stabilization of atmospheric CO2 concentrations at 550 parts per million by volume (ppmv) by the end of the 21st century. Due to the assumed technological learning, costs of the emissions reduction for CCS drop rapidly and in parallel with the massive introduction of CCS on the global scale. Compared to scenarios based on static cost assumptions for CCS, the contribution of carbon sequestration is about 50 percent higher in the case of learning resulting in cumulative sequestration of CO2 ranging from 150 to 250 billion (109) tons carbon during the 21st century. The results illustrate that carbon capture and sequestration is one of the obvious priority candidates for long-term technology policies and enhanced R&D efforts to hedge against the risk associated with high environmental impacts of climate change.
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (37)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544204001732
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:29:y:2004:i:9:p:1309-1318
DOI: 10.1016/j.energy.2004.03.089
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().