Design and multi-criteria optimization and financial assessment of an innovative combined power plant and desalination process
Jieru Feng,
Yiqing Huang,
Juqiang Li and
Xuetao Li
Energy, 2024, vol. 300, issue C
Abstract:
Geothermal power generation programs are crucial due to their long-term sustainability and environmentally friendly characteristics, particularly for potential energy-based applications in the future. Innovative designs can yield improve efficien by mitigating irreversibility, resulting in enhanced power production. Hence, this study investigates an innovative cascade thermal design model that employs geothermal resources to enhance the efficiency and output of low-temperature power generation systems, specifically through the integration of organic flash and organic Rankine cycles. Additionally, this model introduces a novel cogeneration approach by incorporating a desalination unit based on humidification-dehumidification processes, aiming to concurrently produce electricity and fresh water. Employing a combination of thermodynamic analysis and financial assessment, the system's performance was simulated and optimized in MATLAB, using the Multi-Objective Particle Swarm Optimization (MOPSO) method. A sensitivity analysis preceded the optimization, leading to the development of three distinct optimization scenarios focused on balancing power and freshwater production, maximizing exergetic efficiency and net present value, and optimizing fixed capital investment for maximum financial viability. The results highlight the second scenario as particularly effective, achieving a power generation of 254.3 kW, an exergetic efficiency of 44.84 %, and a net present value of $405,099. Conversely, the third scenario offers the best balance between freshwater production capacity (0.504 kg/s), fixed capital investment ($820,822), and a payback period of 7.12 years. This research demonstrates the potential of integrating advanced thermal models with geothermal resources for sustainable and efficient energy and freshwater production, marking a significant step forward in the development of eco-friendly cogeneration systems.
Keywords: Geothermal-driven power generation; Cascade thermal design; Multi-criteria optimization; Desalination; Economic analysis (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422401260X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:300:y:2024:i:c:s036054422401260x
DOI: 10.1016/j.energy.2024.131487
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().