EconPapers    
Economics at your fingertips  
 

A novel two-stage multi-objective dispatch model for a distributed hybrid CCHP system considering source-load fluctuations mitigation

Yuan Zhou, Jiangjiang Wang, Changqi Wei and Yuxin Li

Energy, 2024, vol. 300, issue C

Abstract: Small-scale distributed energy systems with combined cooling, heating, and power (DES-CCHP) production have attracted international interest. However, fluctuating loads and renewable energies continuously disturb the real-time operation of DES-CCHP and even the connected grid, hindering the broad application of grid-connected DES-CCHP. In this paper, a novel model predictive control (MPC) based two-stage strategy is developed for DES-CCHP, with multiple timescales consideration. In the first stage, a multi-objective MPC is built with inheritance and fusion mechanisms of multi-step scheduling instructions, simultaneously minimizing operation costs and power fluctuations. The second stage performs intelligent decision-making on the results of the first stage, which allows appropriate state-switching instructions to ensure economy. Meanwhile, the decision-making rejects the unnecessary one and triggers a second-round flexibility-based interventional optimization to revise scheduling planning. The case studies show that compared to dispatch without MPC, the economic single-objective MPC, single-stage multi-objective MPC (only applies the first-stage models), and two-stage multi-objective MPC save costs by 5.31 %, 4.80 %, and 4.57 %, respectively. As for fluctuations mitigation, the single-stage and two-stage models significantly smooth power fluctuations by 51.66 % and 69.93 %, respectively. The proposed strategy operates DES-CCHP economically, stably, and grid-friendly under a rugged operating environment.

Keywords: Distributed energy system; Combined cooling heating and power (CCHP); Energy management; Uncertain fluctuations; Flexibility; Renewable energy sources (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224013306
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:300:y:2024:i:c:s0360544224013306

DOI: 10.1016/j.energy.2024.131557

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:300:y:2024:i:c:s0360544224013306