Prediction of energy consumption for manufacturing small and medium-sized enterprises (SMEs) considering industry characteristics
Jiyoung Oh and
Daiki Min
Energy, 2024, vol. 300, issue C
Abstract:
There has been a growing demand for energy consumption statistics in the manufacturing industry to establish national energy and greenhouse gas policies. Despite its importance, the Korean government faces significant challenges in collecting energy data at a facility level in a precise and timely manner. To address the lack of timely data, this paper employs machine-learning models to predict the annual total energy consumptions of each manufacturing facility. We first designed four prediction models that take into account the characteristics and energy consumption behaviors of industry sub-sectors. As input variables, these prediction models mainly included electricity consumption, employee size, energy types, gas consumption and other accessible data. Finally, we conducted numerical experiments on approximately 100,000 facilities and evaluated the prediction performance of various machine-learning algorithms such as linear regression, decision tree regression, random forest regression, gradient boost regression, and extreme gradient boosting regression. The numerical experiments provided insights into which model and algorithm offer the best prediction performance for each industry sub-sector. In addition, we identified the important variables for predicting total energy consumption, revealing that not only electricity but also various other energy sources and variables representing industry-specific characteristics play a crucial role in improving prediction performance.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422401394X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:300:y:2024:i:c:s036054422401394x
DOI: 10.1016/j.energy.2024.131621
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().