EconPapers    
Economics at your fingertips  
 

Stochastic inversion of fracture networks using the reversible jump Markov chain Monte Carlo algorithm

Runhai Feng and Saleh Nasser

Energy, 2024, vol. 301, issue C

Abstract: Characterization of fracture networks is essential in the production optimization or storage calculation for enhanced geothermal systems or geologic carbon storage. A novel inversion approach is proposed for estimating the fracture networks in this research. The discrete fracture network technique is adopted to probabilistically describe various fracture parameters such as trace length, midpoint position or azimuthal angle. The reversible jump Markov chain Monte Carlo algorithm is applied to explore the target posterior distribution of model parameters of differing dimensionality, in which the number of fractures is assumed to be unknown. More specifically, the birth-death strategy is utilized to perturb the fracture number iteratively in the sampling process. The proposed methodology is applied with two different types of observational datasets, namely the head records from steady-state flow simulation and the acoustic impedance obtained from seismic inversion. The sampling results can successfully recover the fracture geometry in the observed domain, and the number of fractures in the system can be retrieved as well. Benchmarked on multiple Markov chain trials, the technique of parallel tempering can greatly improve the convergence efficiency and increase the diversity of sampled posterior models, through the random swapping of model states across the whole temperature ladder.

Keywords: Fracture geometry; Stochastic inversion; rjMCMC; Parallel tempering; Probability distribution (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224011484
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:301:y:2024:i:c:s0360544224011484

DOI: 10.1016/j.energy.2024.131375

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:301:y:2024:i:c:s0360544224011484