EconPapers    
Economics at your fingertips  
 

A two-layer energy management for islanded microgrid based on inverse reinforcement learning and distributed ADMM

Lei Huang, Wei Sun, Qiyue Li, Daoming Mu and Weitao Li

Energy, 2024, vol. 301, issue C

Abstract: The development of a scheduling strategy for an islanded microgrid (IMG) is critical for ensuring the system’s stability and economic efficiency. Traditional scheduling strategies for IMGs predominantly utilize centralized management by the microgrid central controller (MGCC), which introduces a vulnerability to a single point of failure. To address this limitation, this paper presents a two-layer energy management strategy for IMGs based on the improved alternating direction method of multipliers (ADMM) and inverse reinforcement learning (IRL). First, the framework of the proposed strategy, comprising a scheduling layer and a real-time dispatch layer, is outlined. Next, the problem formulation of the scheduling layer is analyzed, and the proposed IRL-based management strategy for the energy storage system (ESS) is presented. Then, a distributed optimization algorithm based on the improved ADMM is proposed for the management of controllable distributed generators (CDGs) in the real-time dispatch layer. Lastly, the case study demonstrates the efficacy of the proposed strategy in diminishing MGCC dependency. The comparative analysis indicates that the proposed strategy outperforms existing scheduling strategies in terms of cost-effectiveness when the forecast error exceeds 3%. Moreover, in contrast to existing scheduling strategies, the proposed strategy mitigates the risk associated with a single point of failure.

Keywords: Islanded microgrid; Energy management; Optimization methods; Distributed algorithms; Reinforcement learning (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224014452
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:301:y:2024:i:c:s0360544224014452

DOI: 10.1016/j.energy.2024.131672

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:301:y:2024:i:c:s0360544224014452