Comparative analysis of permeability rebound and recovery of tectonic and intact coal: Implications for coalbed methane recovery in tectonic coal reservoirs
Jiaqi Wei,
Erlei Su,
Guangwei Xu,
Yuqiang Yang,
Shuran Han,
Xiangjun Chen,
Haidong Chen and
Fenghua An
Energy, 2024, vol. 301, issue C
Abstract:
The permeability rebound and recovery of coal reservoirs is one of the key factors affecting the efficient recovery of coalbed methane (CBM). Most studies focus on the permeability rebound and recovery of intact coal reservoirs. Conversely, the permeability rebound characteristics of tectonic coal have only been rarely investigated. In this paper, an improved fully coupled mathematical model for methane transport of tectonic coal and intact coal seam was established. Then, the phenomenon of permeability rebound and recovery was analyzed theoretically, and the permeability rebound time, rebound value and recovery time were proposed to compare the difference in permeability evolution. In addition, the permeability rebound characteristics of tectonic and intact coal were evaluated for different geological parameters of coal reservoirs. The results indicate that the rebound time and recovery time of both intact and tectonic coal increase with the increase of initial gas pressure. As the initial permeability increases, the permeability rebound time of intact and tectonic coal show a decreasing trend. The permeability rebound time of intact coal decreases with increasing initial diffusion coefficient, while that of tectonic coal shows the opposite trend. Furthermore, the change in permeability recovery time for tectonic coal is 6.59 times larger than for intact coal, indicating that the effect of permeability rebound phenomenon is more significant during gas extraction in tectonic coal reservoirs. Finally, a conceptual model was proposed to explain the differential mechanism of permeability rebound between tectonic and intact coal, and its implications for CBM recovery in tectonic coal reservoirs was discussed. Therefore, the results presented in this paper can provide a theoretical basis for the efficient development of CBM in tectonic coal reservoirs.
Keywords: Permeability rebound; Permeability recovery; Coalbed methane; Tectonic coal; Numerical simulation (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224014750
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:301:y:2024:i:c:s0360544224014750
DOI: 10.1016/j.energy.2024.131702
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().