EconPapers    
Economics at your fingertips  
 

Pre-optimization-assisted deep reinforcement learning-based energy management strategy for a series–parallel hybrid electric truck

Yahui Zhang, Zimeng Wang, Yang Tian, Zhong Wang, Mingxin Kang, Fangxi Xie and Guilin Wen

Energy, 2024, vol. 302, issue C

Abstract: P2-P3 series-parallel hybrid electric vehicles (HEVs) feature intricate topologies with multiple power sources and multiple working modes, posing a challenge for developing effective energy management strategies (EMSs). This paper introduces a framework that combines deep reinforcement learning (DRL) with pre-optimized energy management to address this challenge. Considering the characteristics of HEVs, the framework incorporates the pre-optimized equivalent motor and pre-optimized mode selection rule into a deep deterministic policy gradient (DDPG) loop. The pre-optimization of the equivalent motor aims to reduce the energy management task’s dimensionality by equating two motors as the equivalent motor, while the pre-optimized mode selection rule systematically integrates mode selection and energy allocation into the EMS. The study assumes HEVs operate in connected urban environments and incorporates middle-horizon traffic information to enhance EMS performance. Additionally, the study integrates the frequent engine start-stop characteristics of HEVs into EMS design. Simulation results demonstrate that the fuel economy of the proposed EMSs in this study ranges from 87.2% to 90.7% of the DP-based EMS. The inclusion of an engine start-stop penalty significantly reduces the number of engine start-stops without compromising fuel economy.

Keywords: Energy management strategy; Hybrid electric truck; P2-P3 series-parallel HEV; Reinforcement learning; Pre-optimization; Traffic information (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224014014
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:302:y:2024:i:c:s0360544224014014

DOI: 10.1016/j.energy.2024.131628

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224014014