Two-stage day-ahead and intra-day scheduling considering electric arc furnace control and wind power modal decomposition
Xudong Zhao,
Yibo Wang,
Chuang Liu,
Guowei Cai,
Weichun Ge,
Bowen Wang,
Dongzhe Wang,
Jingru Shang and
Yiru Zhao
Energy, 2024, vol. 302, issue C
Abstract:
As the uncertainty in energy supply increases, engaging various flexible resources in power systems has emerged as an effective strategy to address wind curtailment issues. Existing research insufficiently explores how EAFs can participate in reducing wind curtailment or optimizing flexible power system resources to decrease CO2 emissions from TTPs and enhance wind energy absorption across various timescales. This study introduces a dual timescale, dual-tier scheduling methodology incorporating EAF regulation and wind power modal decomposition. The day-ahead model integrates EAF demand response to decrease wind curtailment, a comprehensive wind power allocation, and a TTP carbon minimization model. The intra-day model employs wind power modal decomposition for optimizing BESSs within WFs and schedules TTPs to minimize CO2 emissions. Implemented through iterative genetic algorithms and CPLEX solver techniques, simulation results from a real-case scenario indicate that incorporating EAF loads reduces wind curtailment by 40.49 % and cuts CO2 emissions by 2.5 % in the day-ahead phase. Furthermore, by applying modal decomposition, TTPs and BESSs absorb fluctuating wind power components, ensuring maximal wind utilization and substantial CO2 reduction at TTPs. This approach offers vast potential to enhance power system flexibility, advance energy-intensive industries' transition, and foster low-carbon initiatives at TTPs.
Keywords: EAF load response; Wind energy absorption; Wind power decomposition; BESS control; CO2 reduction (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224014671
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:302:y:2024:i:c:s0360544224014671
DOI: 10.1016/j.energy.2024.131694
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().