EconPapers    
Economics at your fingertips  
 

A novel dynamic ensemble of numerical weather prediction for multi-step wind speed forecasting with deep reinforcement learning and error sequence modeling

Jing Zhao, Yiyi Guo, Yihua Lin, Zhiyuan Zhao and Zhenhai Guo

Energy, 2024, vol. 302, issue C

Abstract: Accurate wind forecasts for one day ahead or longer periods have significant impacts on the safe and efficient dispatch of power grids, where Numerical Weather Prediction (NWP) serves as the essential tool, such as ensemble NWP integrating multiple single simulations. Typically, ensembles include all single members with fixed weights; however, the relative accuracy of each member may change over time. This study introduces an attractive idea: improving ensemble performance by dynamically recognizing and avoiding low-performing members. It proposes a dynamic ensemble strategy based on NWP, reinforcement learning and error sequence correction. The process begins with Weather Research and Forecasting ensemble simulations. A dynamic framework is then constructed by mapping the multi-step ensemble problem into a Markov decision process, which is further solved using deep deterministic policy gradient. Subsequently, a hybrid deep learning model, comprising temporal convolutional network and bidirectional long short-term memory, is constructed for error sequence estimation of dynamic ensemble, using the high-frequency information of NWP as input. Conducting experiments at two wind farms, and focusing on the 24-h wind speed forecast with a 15-min time resolution, the proposed system demonstrates a reliable and stable ensemble throughout the entire forecasting horizon, significantly reducing the probability of large forecasting errors.

Keywords: Wind speed forecast; Numerical weather prediction; Dynamic ensemble; Reinforcement learning; Deep learning (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224015603
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:302:y:2024:i:c:s0360544224015603

DOI: 10.1016/j.energy.2024.131787

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224015603