Design and analysis of steam methane reforming hydrogen liquefaction and waste heat recovery system based on liquefied natural gas cold energy
Yan Qiao,
Wenquan Jiang,
Yang Li,
Xiaoxiao Dong and
Fan Yang
Energy, 2024, vol. 302, issue C
Abstract:
To improve the utilization rate of liquefied natural gas (LNG) cold energy, reduce hydrogen (H2) liquefaction cost, recover waste heat and reduce carbon dioxide (CO2) emission, this study designs a steam methane reforming (SMR) H2 liquefaction and waste heat recovery system based on LNG cold energy for the production of 10 tons of liquid hydrogen (LH2) per day. Parameters analyses and optimization, exergy analyses and economic analyses of the system are carried out and compared with other H2 liquefaction systems. The results show that: under the optimal conditions, the values of specific energy consumption (SEC), coefficient of performance (COP) and exergy efficiency (ƞex) were 5.93 kWh/kg LH2, 0.2225 and 53.24%, respectively. Exergy losses of system is mainly distributed in heat exchange equipment and compressors. Decreasing the heat exchange equipment cold and heat sources inlet temperature difference and reducing the compressors compression ratio were beneficial to reduce equipment exergy losses. The pre-cooling performance of LNG is better than that of liquid nitrogen (LN2) and mixed refrigerant (MR). Compared with the pre-cooling H2 liquefaction system without waste heat recovery, the SEC decreased by 0.26 kWh/kg LH2 and ƞex increased by 2.28%. Research results are conducive to resource conservation and environmental protection.
Keywords: Hydrogen liquefaction; Liquefied natural gas; Steam methane reforming; Waste heat recovery; Exergy analysis (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224015652
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:302:y:2024:i:c:s0360544224015652
DOI: 10.1016/j.energy.2024.131792
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().