EconPapers    
Economics at your fingertips  
 

A novel study on power consumption of an HVAC system using CatBoost and AdaBoost algorithms combined with the metaheuristic algorithms

Jianxiao Bian, Jiarui Wang and Qian Yece

Energy, 2024, vol. 302, issue C

Abstract: Efficient power management is fundamental for organizations and systems to conserve resources, reduce costs, and improve environmental sustainability. To achieve the mentioned purposes, it is vital to perceive power consumption patterns and trends to make informed decisions about energy usage. By evaluating power consumption, inefficiencies and areas for improvement can be identified. In this regard, this paper presents a comprehensive study to predict power usage in a non-residential building HVAC system. The study employs the integration of machine learning models and optimization algorithms to achieve accurate predictions. The results demonstrate the effectiveness of the approach, with the CatBoost-AO model depicting superior performance in comparison with other models across a range of statistical evaluation metrics including NSE, JSD, RMSE, MAPE, VAF, KLD, as well as R2 and runtime. Remarkably, the CatBoost-AO model achieves the maximum R2 value of 0.91, indicating strong predictive capability. Overall, the presented study highlights the potential of employing machine learning and optimization techniques to improve power management and resource efficiency in HVAC systems, contributing to more sustainable and cost-effective operations in non-residential buildings.

Keywords: Power consumption prediction; HVAC systems; Machine learning; CatBoost model; Metaheuristic optimization algorithms (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224016141
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:302:y:2024:i:c:s0360544224016141

DOI: 10.1016/j.energy.2024.131841

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224016141