EconPapers    
Economics at your fingertips  
 

A technical and economic evaluation of floating photovoltaic systems in the context of the water-energy nexus

Nabil A.S. Elminshawy, Amr Osama, Antonio Gagliano, Erkan Oterkus and Giuseppe Marco Tina

Energy, 2024, vol. 303, issue C

Abstract: Energy and water scarcity are increasingly global challenges that should be addressed collaboratively. Accordingly, floating photovoltaic systems (FPV), which are mounted on the water's surface, are gaining global acceptance. This system offers several unique benefits over land-based ones, including land preservation, water saving, and enhancing system efficiency. This research seeks to experimentally assess and compare the performance of the FPV with those of a conventional land-based system (LPV) in a Mediterranean climate. To that aim, both the FPV and the LPV are analyzed in terms of electrical and thermal performance, evaporation mitigation, environmental and economic considerations at varied module tilt angles (10°, 15°, 20°, and 30°). The findings reveal that adjusting the FPV tilt to 10° reduces the module temperature by 7.24 °C, leading to a 16 % reduction compared to LPV due to the water surface proximity. The FPV deployment at a tilt of 10° reduced the evaporation by 83.33 %. The FPV surpasses the LPV installed at a tilt angle of 20° by 8.92 % in power generation. It's confirmed that the FPV system produces electricity with a LCOE of 0.059 $/kWh with the potential of saving 2.19 m3/m2 of water vapor annually, which mitigates 5.20 kg of CO2/m2/year.

Keywords: Photovoltaic; Floating system; Cooling; Co-benefits; Water conservation; Evaporation (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224016773
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:303:y:2024:i:c:s0360544224016773

DOI: 10.1016/j.energy.2024.131904

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:303:y:2024:i:c:s0360544224016773