EconPapers    
Economics at your fingertips  
 

Intelligent predictions for flow pattern and phase fraction of a horizontal gas-liquid flow

Huimin Ma, Ying Xu, Hongbo Huang, Chao Yuan, Jinghan Wang, Yiguang Yang and Da Wang

Energy, 2024, vol. 303, issue C

Abstract: In-situ measurement of phase fraction of a gas-liquid flow is closely related to the production efficiency in natural gas extraction. However, the measurement accuracy can be affected by the co-existed multiple flow patterns. This study proposes an intelligent strategy that identifies the flow pattern followed by a phase fraction prediction. For flow pattern recognition, we establish a bidirectional long short-term memory (BI-LSTM) network whose inputs are time-series phases of a Radio Frequency Sensor (RFS). The accuracy is 92.4 % over four classical flow patterns. The time-series phases of RFS are agreed well with the axial imaging from a Wire-Mesh Sensor (WMS). Two predictive models are developed for gas fraction: dimensionless analysis model (DAM) based on RFS and gas Froude number, and neural network model (NNM) with the phases of RFS and the recognized flow pattern. The mean absolute errors (MAE) are 3.2 % and 1.5 % for DAM and NNM, respectively. It is concluded that a NNM, incorporated with RFS and flow pattern by BI-LSTM, can intelligently predict gas fraction with high-accuracy. As the present strategy decouples the pattern recognition and gas fraction prediction into two networks, the complexity of a NNM is reduced which benefits the in-situ measurement practice.

Keywords: Gas-liquid flow; Flow pattern recognition; Phase fraction measurement; Radio frequency; Neural network (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224017171
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:303:y:2024:i:c:s0360544224017171

DOI: 10.1016/j.energy.2024.131944

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:303:y:2024:i:c:s0360544224017171