Efficiency improvement and flexibility enhancement by molten salt heat storage for integrated gasification chemical-looping combustion combined cycle under partial loads
Xiaolong Lin,
Xianchen Meng,
Huchao Song and
Yinhe Liu
Energy, 2024, vol. 303, issue C
Abstract:
Chemical-looping combustion offers a promising carbon capture technology for coal-fired power generation. Enhancing the operational flexibility and energy efficiency of such plants is crucial for achieving primary energy savings and renewable energy accommodation. In this study, the operating characteristics of an integrated gasification chemical-looping combustion combined cycle (IGCLCCC) under various loads are studied, and the deterioration mechanism of its thermodynamic performance is revealed. Further, an IGCLCCC scheme coupled with molten salt heat storage is proposed and evaluated from thermodynamic performance and operational flexibility. Study results indicate that the net efficiency of the IGCLCCC reaches 37.7% under 30% load, which is superior to those of conventional CO2 capture power plants under full load. Adopting the heat storage system significantly improves the operational flexibility and energy efficiency of the IGCLCCC by expanding its operating range from 30.0∼100.0% to 25.7∼105.3%. The equivalent round-trip efficiency of the heat storage system reaches 134.6% due to the upgrading of the thermal energy from the exhaust gas of the air turbine from original low levels to high levels driven by the exergy saving during the oxygen carrier-air reaction because of the air preheating to a high temperature.
Keywords: Chemical-looping combustion; CO2 emission reduction; Molten salt heat storage; Off-design conditions; Operational flexibility (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224017183
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:303:y:2024:i:c:s0360544224017183
DOI: 10.1016/j.energy.2024.131945
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().