EconPapers    
Economics at your fingertips  
 

Optimization of parameters and thermodynamics of gasification process for enhanced CO2 capture in an IGCC system

Qilong Xu, Xiaofei Li, Jiahui Yu, Shuai Wang, Kun Luo and Jianren Fan

Energy, 2024, vol. 304, issue C

Abstract: The integrated gasification combined cycle (IGCC) technology is renowned for its high energy utilization efficiency. However, the exhaust emissions from an IGCC power plant still contain a significant amount of carbon dioxide (CO2), which has a detrimental impact on the environment. Therefore, it is necessary to capture CO2 and reduce its emissions in IGCC systems. This study develops an integrated model for the process simulation of a 250 MW IGCC system with an advanced CO2 capture technology. After establishing the model, sensitivity analysis is conducted to obtain the optimal parameters for methyldiethanolamine (MDEA) absorption. The operational parameters of the coal gasification unit are optimized to mitigate the elevated energy consumption. The results indicate that the original gasification system has an energy consumption rate of 57.6 %, whereas the optimized system achieves a significant reduction to 42.8 %, resulting in a notable improvement in the energy efficiency of the gasification unit by 10.2 %. The exergy efficiency of the gasification process is improved by 6.4 %. This research paradigm showcases the opportunity to significantly enhance the sustainability and economic feasibility of IGCC technology.

Keywords: IGCC; CO2 emissions and capture; Process modeling and optimization; Energy consumption analysis; Sustainability (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224016268
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:304:y:2024:i:c:s0360544224016268

DOI: 10.1016/j.energy.2024.131853

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:304:y:2024:i:c:s0360544224016268