EconPapers    
Economics at your fingertips  
 

Experimental investigation of two-stage NH3–H2O resorption heat storage system with solution concentration difference

Pengbo Dou, Teng Jia, Peng Chu and Yanjun Dai

Energy, 2024, vol. 304, issue C

Abstract: Widespread application of solar energy is severely restricted to its instability in time and space. Heat storage system is considered to be one of the most effective pathways to achieve long-term heat supply. Among all the heat storage technologies, solution concentration difference storage technologies stand out for low heat loss and high energy density. By substituting condenser and evaporator in conventional absorption cycle with a high-pressure absorber and low-pressure generator, a resorption cycle could be established. Compared with absorption heat storage cycle, working pressure of resorption heat cycle is lower, making it possible to utilize low-pressure heat source. Two-stage heat source cycle is further proposed to lower working pressure and upgrading supply water temperature. Resorption energy storage cycle with solution concentration difference is established and studied. A prototype based on two-stage ammonia-water resorption heat storage cycle was set up and tested. The result shows that the constraint relation between ambient temperature and heat source temperature of the proposed system. In single-stage mode, the lowest working ambient temperature is 5 °C when heat source temperature is 90 °C. The lowest working ambient temperature could be declined to 0 °C when heat source temperature rises to 120 °C. In two-stage mode, the lowest working ambient temperature is 0 °C when heat source temperature is only 110 °C, which proves the adaptability of two-stage cycle. The highest ESCOP appears in the 15 °C–120 °C single-stage mode, which is 0.742. The highest COP is 1.324 under the same condition. The highest energy density occurs in two-stage mode, which is 467.07 kJ/kg when ambient and heat source is set as 15 °C, 120 °C. The advantage that two-stage mode could enlarge solution concentration difference is verified.

Keywords: Ammonia-water; Heat storage; Solution concentration difference; Two-stage cycle; Absorption-resorption (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224017857
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:304:y:2024:i:c:s0360544224017857

DOI: 10.1016/j.energy.2024.132011

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:304:y:2024:i:c:s0360544224017857