Reservoir properties inversion using attention-based parallel hybrid network integrating feature selection and transfer learning
Jun Wang and
Junxing Cao
Energy, 2024, vol. 304, issue C
Abstract:
The inversion of subsurface reservoir properties is of profound significance to the oil and gas energy development and utilization. The strong heterogeneity and complex pore structure of underground reservoirs pose a challenge to efficient oil and gas energy development and utilization across the world, which increases the necessity of developing an efficient reservoir properties inversion method. However, traditional model-driven methods are confronted with the challenges of strong nonlinearity and geological heterogeneity. Moreover, previous studies rarely emphasized the importance of nonlinear feature selection and transfer learning (TL). Aiming to address the research gaps, a reservoir properties inversion method was proposed by combining random forest (RF) feature selection, bidirectional temporal convolutional network (BiTCN), bidirectional gated recurrent units (BiGRU) network, multi-head attention (MHA) mechanism and TL strategy. First, the RF was used to screen the features with significant correlation with the target reservoir properties. Thereafter, combining BiTCN and BiGRU network to leverage their complementary strengths, a parallel dual branch feature learning network was constructed to learn richer geological information from logging data. Meanwhile, MHA was introduced to fuse the output features of the dual network structure. Finally, the fused features were passed through the fully connected module to output the inversion results. TL was used to associate the correlation between reservoir properties and model inversion to improve the inversion performance. The application results with actual field data showed that the proposed method was accurate and robust in reservoir properties inversion. This study can provide a new way for reliable reservoir properties inversion and promote the application of artificial intelligence in data-driven energy science.
Keywords: Reservoir properties inversion; Parallel dual branch network; Bidirectional temporal convolutional network; Bidirectional gated recurrent units network; Transfer learning; Feature selection (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224018437
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:304:y:2024:i:c:s0360544224018437
DOI: 10.1016/j.energy.2024.132069
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().