Comparison of techniques based on frequency response analysis for state of health estimation in lithium-ion batteries
Shaojin Wang,
Jinrui Tang,
Binyu Xiong,
Junqiu Fan,
Yang Li,
Qihong Chen,
Changjun Xie and
Zhongbao Wei
Energy, 2024, vol. 304, issue C
Abstract:
Frequency response analysis (FRA) methods are commonly used in the field of State of Health (SOH) estimation for Lithium-ion batteries (Libs). However, identifying their appropriate application scenarios can be challenging. This paper presents four FRA techniques, including electrochemical impedance spectra (EIS), mid-frequency and low-frequency domain equivalent circuit model (MLECM), distribution of relaxation time (DRT) and non-linear FRA (NFRA) technique. This paper proposes two estimation frameworks, machine learning and curve fitting, to be applied to each of the four techniques. Eight SOH estimation models are developed by linking the extracted feature parameters to the battery capacity variations. The paper compares the accuracy of estimation, estimation range, and other properties of the eight models. Application scenarios are identified for the techniques by using three classification methods: different estimation frameworks, frequency response linearity, and impedance technique. The results demonstrate that MLF is recommended for scenarios with a large amount of battery data, while CFF is recommended for scenarios with a small amount of data. NFRA could be applied to electric vehicle power batteries, while LFRA is recommended to be used for retired batteries. EIS method is recommended for complex and dynamic scenarios, while non-EIS method is recommended for scenarios that require high accuracy.
Keywords: State of health estimation; Electrochemical impedance spectroscopy; Equivalent circuit model; Distribution of relaxation times; Frequency response analysis (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224018516
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:304:y:2024:i:c:s0360544224018516
DOI: 10.1016/j.energy.2024.132077
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().