A prediction method for blade deformations of large-scale FVAWTs using dynamics theory and machine learning techniques
Wanru Deng,
Liqin Liu,
Yuanjun Dai,
Haitao Wu and
Zhiming Yuan
Energy, 2024, vol. 304, issue C
Abstract:
There is renewed interest in floating vertical axis wind turbines (FVAWTs) as offshore wind turbines progressively increase in size and move into deeper waters. To explore the potential of large-scale FVAWTs for future commercialization, it is crucial to investigate blade deformations using an accurate and effective method. In this study, we developed a hybrid model, namely, the SVST-ANN, which integrates dynamic theory and machine learning techniques to predict blade deformations. Specifically, an artificial neural network (ANN) module is incorporated into the slack coupled vertical axis wind turbine simulation tool (SVST), which significantly reduces the total computational time. A comparative study was conducted between the SVST-ANN model and the traditional SVST model, employing a 10 MW helical-type FVAWT as an example. The results show that the SVST-ANN model can accurately and efficiently predict blade deformations. The maximum errors for the maximum value, average value, and standard deviation across all nodes are minimal, with a corresponding computational time reduction of approximately 60 %. This study provides a novel method for investigating the dynamic behavior of the FVAWTs, which is more effective for calculating the elastic deformations of blades than traditional numerical methods.
Keywords: Vertical axis wind turbine; Floating wind turbine; Blade deformation prediction; Dynamic response calculation; Machine learning techniques (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224019856
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:304:y:2024:i:c:s0360544224019856
DOI: 10.1016/j.energy.2024.132211
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().