EconPapers    
Economics at your fingertips  
 

Influence of variable enhanced LIVC miller cycle coupled with high compression ratio on the performance and combustion of a supercharged spark ignition engine

Dongdong Jia, Junhao Qiao, Shuqian Wang, Jinhuan Guan, Jingping Liu, Jianqin Fu, Yangyang Li and Rumin Wang

Energy, 2024, vol. 309, issue C

Abstract: A novel variable enhanced late intake valve closing (LIVC) Miller cycle with asynchronous valve opening was proposed. Relevant tests were carried out in a supercharged spark ignition (SI) engine with high compression ratio, which mainly included the effects of variable valve timing on performance and combustion characteristics, as well as the comparison with the baseline engine. The purpose of this study was to explore the effect of different intake and exhaust opening timing on the performance and combustion characteristics of the enhanced LIVC Miller cycle with asynchronous valve opening, and further explore the energy saving potential of this Miller cycle. The results showed that the application of variable enhanced Miller cycle effectively improved the anti-knock ability and pumping loss of the engine with high compression ratio. On the one hand, the optimization of pumping loss substantially improved the fuel economy under small load conditions. On the other hand, better combustion performance and air-fuel ratio could be achieved at medium and high loads. Meanwhile, the exhaust valve should be opened as earlier as possible to achieve the best fuel economy. Correspondingly, under optimal valve timing, compared with the baseline engine, the asynchronous intake valve opening variable enhanced Miller cycle engine with high compression ratio had a fuel economy optimization of more than 3.5 % under all loads, and the maximum fuel economy optimization was 12.74 % under the condition of 11 bar.

Keywords: Variable enhanced miller cycle; Asynchronous valve opening; Variable valve timing; High compression ratio; Fuel economy (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422402989X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:309:y:2024:i:c:s036054422402989x

DOI: 10.1016/j.energy.2024.133214

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-05-25
Handle: RePEc:eee:energy:v:309:y:2024:i:c:s036054422402989x