Electric power generation by super-adiabatic combustion in thermoelectric porous element
Katsunori Hanamura,
Tomoyuki Kumano and
Yuya Iida
Energy, 2005, vol. 30, issue 2, 347-357
Abstract:
A new system for converting combustion heat into electric power was proposed on the basis of reciprocating-flow super-adiabatic combustion in a catalytic and thermoelectric porous element. Self-sustaining combustion of an extremely low-calorific gas was successfully achieved in the element; because a reciprocating flow in the porous element recirculated energy, effectively regenerating combustion gas enthalpy into an enthalpy increase in the low-calorific gas. In the combustion system, a trapezoidal temperature distribution was established along the flow direction, resulting in a steep temperature gradient in the thermoelectric porous element. Numerical simulation showed that 94% of the combustion heat was transferred through the thermoelectric element by conduction. As a result, the total thermal efficiency, which was defined as the ratio of the electric power generated to the combustion heat, attained a value close to the conversion efficiency of the thermoelectric device itself.
Date: 2005
References: View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544204002749
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:30:y:2005:i:2:p:347-357
DOI: 10.1016/j.energy.2004.05.010
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().