EconPapers    
Economics at your fingertips  
 

Electric power generation by super-adiabatic combustion in thermoelectric porous element

Katsunori Hanamura, Tomoyuki Kumano and Yuya Iida

Energy, 2005, vol. 30, issue 2, 347-357

Abstract: A new system for converting combustion heat into electric power was proposed on the basis of reciprocating-flow super-adiabatic combustion in a catalytic and thermoelectric porous element. Self-sustaining combustion of an extremely low-calorific gas was successfully achieved in the element; because a reciprocating flow in the porous element recirculated energy, effectively regenerating combustion gas enthalpy into an enthalpy increase in the low-calorific gas. In the combustion system, a trapezoidal temperature distribution was established along the flow direction, resulting in a steep temperature gradient in the thermoelectric porous element. Numerical simulation showed that 94% of the combustion heat was transferred through the thermoelectric element by conduction. As a result, the total thermal efficiency, which was defined as the ratio of the electric power generated to the combustion heat, attained a value close to the conversion efficiency of the thermoelectric device itself.

Date: 2005
References: View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544204002749
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:30:y:2005:i:2:p:347-357

DOI: 10.1016/j.energy.2004.05.010

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:30:y:2005:i:2:p:347-357