The economics of hybrid power systems for sustainable desert agriculture in Egypt
Sami Kamel and
Carol Dahl
Energy, 2005, vol. 30, issue 8, 1271-1281
Abstract:
Egypt has embarked on an ambitious desert land reclamation program in order to increase total food production. Energy planners for these desert agriculture locations have chosen diesel generation power technology because minimization of the initial capital cost of a power supply system is their top priority. This heavy reliance on diesel generation has negative effects on the surrounding environment including soil, groundwater, and air pollution. Although good solar and wind resource prospects exist for the use of cleaner hybrid power systems in certain desert locations, little research has been done to investigate the economic potential of such systems in Egypt’s desert agriculture sector. Using optimization software, we assess the economics of hybrid power systems versus the present diesel generation technology in a remote agricultural development area. We also consider the emission reduction advantages of using hybrid systems. Interestingly enough, optimization results show that hybrid systems are less costly than diesel generation from a net present cost perspective even with the high diesel fuel price subsidies. Since hybrids are also more environmentally friendly, they represent a strong step towards achieving sustainable desert agriculture.
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (37)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544204000404
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:30:y:2005:i:8:p:1271-1281
DOI: 10.1016/j.energy.2004.02.004
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().