EconPapers    
Economics at your fingertips  
 

Assessing the performance of the “Simple Model of the Atmospheric Radiative Transfer of Sunshine” (SMARTS2) in a first tier of software using empirical weather data

H.K. Askar and W.J. Batty

Energy, 2005, vol. 30, issue 9, 1577-1588

Abstract: Software is being developed to assess the performance of a new form of triple glazing system that can be used in hot arid countries. The method includes the insertion of an angled glazing element within the window cavity to maximize the reflection of incident direct insolation while maintaining an acceptable level of day lighting. SMARTS2 (Simple Model of the Atmospheric Radiative Transfer of Sunshine) is used as a first tier platform to provide solar input (i.e. direct, diffused and albedo) for tilted surfaces for simulations of optical performance, using the visible band of the electromagnetic spectrum. Results, thus, obtained can be used in a ray-tracing algorithm to calculate an optimal angle of insertion of the suggested element that corresponds to the solar geometry of particular latitudes. General weather files of eight countries were used for the analysis, which included an examination of detailed annual solar data and turbidity (i.e. dust) levels for Kuwait. SMARTS2 performance as a solar model was assessed within the narrow visible band.

Date: 2005
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544204002518
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:30:y:2005:i:9:p:1577-1588

DOI: 10.1016/j.energy.2004.04.048

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:30:y:2005:i:9:p:1577-1588