EconPapers    
Economics at your fingertips  
 

Battery state of charge estimation for electric vehicle using Kolmogorov-Arnold networks

Mohd Herwan Sulaiman, Zuriani Mustaffa, Amir Izzani Mohamed, Ahmad Salihin Samsudin and Muhammad Ikram Mohd Rashid

Energy, 2024, vol. 311, issue C

Abstract: Accurate estimation of the state of charge (SoC) in electric vehicle (EV) batteries is essential for effective battery management and optimal performance. This study investigates the application of Kolmogorov-Arnold Networks (KAN) for SoC estimation, comparing its performance against Artificial Neural Networks (ANN) and a hybrid Barnacles Mating Optimizer-deep learning model (BMO-DL). The dataset, derived from simulations involving a lithium polymer cell model (ePLB C020) in an electric car similar to Nissan Leaf EV, encompasses 68,741 instances, divided into training and testing sets. Three KAN models were developed and evaluated based on root mean square error (RMSE), mean absolute error (MAE), maximum error (MAX), and coefficient of determination (R2). Residual analysis indicates that KAN-Model 1 performs the best, with residuals closely clustered around zero and no significant patterns, suggesting reliable and unbiased predictions. KAN-Model 2 also performs well but exhibits some nonlinear trends in the residuals. ANN and BMO-DL models show larger deviations and less consistent performance. These findings highlight the potential of KAN for enhancing SoC estimation accuracy in EV applications.

Keywords: State of charge (SoC); Electric vehicles (EV); Kolmogorov-Arnold networks (KAN); Artificial neural networks (ANN); Hybrid metaheuristic-deep learning; Battery management (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224031931
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:311:y:2024:i:c:s0360544224031931

DOI: 10.1016/j.energy.2024.133417

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:311:y:2024:i:c:s0360544224031931