Battery state of charge estimation for electric vehicle using Kolmogorov-Arnold networks
Mohd Herwan Sulaiman,
Zuriani Mustaffa,
Amir Izzani Mohamed,
Ahmad Salihin Samsudin and
Muhammad Ikram Mohd Rashid
Energy, 2024, vol. 311, issue C
Abstract:
Accurate estimation of the state of charge (SoC) in electric vehicle (EV) batteries is essential for effective battery management and optimal performance. This study investigates the application of Kolmogorov-Arnold Networks (KAN) for SoC estimation, comparing its performance against Artificial Neural Networks (ANN) and a hybrid Barnacles Mating Optimizer-deep learning model (BMO-DL). The dataset, derived from simulations involving a lithium polymer cell model (ePLB C020) in an electric car similar to Nissan Leaf EV, encompasses 68,741 instances, divided into training and testing sets. Three KAN models were developed and evaluated based on root mean square error (RMSE), mean absolute error (MAE), maximum error (MAX), and coefficient of determination (R2). Residual analysis indicates that KAN-Model 1 performs the best, with residuals closely clustered around zero and no significant patterns, suggesting reliable and unbiased predictions. KAN-Model 2 also performs well but exhibits some nonlinear trends in the residuals. ANN and BMO-DL models show larger deviations and less consistent performance. These findings highlight the potential of KAN for enhancing SoC estimation accuracy in EV applications.
Keywords: State of charge (SoC); Electric vehicles (EV); Kolmogorov-Arnold networks (KAN); Artificial neural networks (ANN); Hybrid metaheuristic-deep learning; Battery management (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224031931
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:311:y:2024:i:c:s0360544224031931
DOI: 10.1016/j.energy.2024.133417
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().