EconPapers    
Economics at your fingertips  
 

Optimization of a finned multi-tube latent heat storage system using new structure evaluation indexes

Yu Bie, Yilian Tang, Weiyi Liu, Anna Hnydiuk-Stefan, M.K. Gupta, Jolanta B. Królczyk and Z. Li

Energy, 2024, vol. 312, issue C

Abstract: The latent heat thermal energy storage (LHTES) is one of the most promising ways of storing solar thermal energy. Since the thermal conductivity of phase change materials are low, traditional shell and tube heat exchangers tend to develop dead zones. Therefore, structural optimization is essential, and a finned multi-tube design is recommended. In this work, nineteen structures for a heat storage tank are designed to explore the influence of different specifications of heat exchange tubes and fins on heat storage/release performance. After establishing 3D physical models, ANSYS/Fluent simulation and a two-step optimization for charging and discharging processes were conducted. Among these structures, N3-M3-D10.2 emerged as the most efficient during charging process in terms of reducing the complete melting time by 25 % and increasing the 3-h heat storage volume by 2.95 times; however, it shows low performance during discharging process, especially with a 2.24 times non-uniformity factor. In the four preferred structures, the benefit-to-cost ratio of N3-M3-D10.2 is 48 %–86.6 % higher than that of the others. The results also show that the number of tubes and fins are negatively related to the melting rate, and positively related to the solidification rate. Moreover, the influence of fin diameter is greater than that of fin number and tube diameter on heat transfer rate. The novelty of this work is not only lies in both considering the charging and discharging processes, but also in using dimensionless normalized indexes and different weights based on customers’ actual requirements for optimization.

Keywords: Latent heat thermal energy storage; Shell and multi-tube tank; Structure optimization; Comprehensive optimization index (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224031967
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:312:y:2024:i:c:s0360544224031967

DOI: 10.1016/j.energy.2024.133420

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224031967