EconPapers    
Economics at your fingertips  
 

In-depth exploration of waste printed circuit boards pyrolysis: Real-time products characteristics, kinetics parameter optimization and reaction mechanism

Na Du, Yuhui Li, Kun Yang, Yufan Zhang and Yuhui Yang

Energy, 2024, vol. 312, issue C

Abstract: Pyrolysis is a promising technology for recycling waste printed circuit boards (WPCBs). This study delves into a real-time examination of the volatiles emitted from WPCBs during pyrolysis using thermogravimetric analysis coupled with Fourier transform infrared spectroscopy/mass spectrometry (TG-FTIR/MS), offering an in-depth analysis of the entire pyrolysis mechanism. An optimized kinetic model for printed circuit board (PCB) pyrolysis is developed by the shuffled complex evolution (SCE) algorithm. Results indicate that the main pyrolysis products are phenol and alkyl-substituted phenols, along with hydrogen bromide (HBr) and bromophenols. Bromides exhibit an earlier onset and peak temperature compared to phenolic products. The pyrolysis process can be divided into two stages: initial depolymerization of the resin body into macromonomers, followed by prevalent alkyl removal, homolytic reactions, and isomerization. The apparent activation energy (E) is 155.32 kJ/mol, the pre-exponential factor (ln(A)) is 29.77 min−1, and the kinetic mechanism function is described by (1‐α)2.02. This study provides crucial knowledge to advance the technology of WPCBs pyrolysis.

Keywords: WPCBs; Pyrolysis; Real-time product analysis; Kinetics parameter optimization; Pyrolysis mechanism (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224032705
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:312:y:2024:i:c:s0360544224032705

DOI: 10.1016/j.energy.2024.133494

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224032705