EconPapers    
Economics at your fingertips  
 

Integrating solar-powered branched GAX cycle and claude cycle for producing liquid hydrogen: Comprehensive study using real data and optimization

Zhang Yamin, A.S. El-Shafay, Manish Saraswat, Ibrahim Mahariq, Fahad Mohammed Alhomayani, Husam Rajab, Sattam Fahad Almojil, Abdulaziz Ibrahim Almohana and Mika Sillanpää

Energy, 2024, vol. 312, issue C

Abstract: The present study introduces a novel hydrogen liquefaction system that integrates a Claude cycle and a branched GAX cycle, marking the first instance of such a combination. Utilizing solar energy improves hydrogen manufacturing efficiency and sustainability. This research uses actual data to estimate the best operating time by examining thermodynamic performance, payback duration, exergoeconomic parameters, environmental effect, and sustainability. A current bi-objective optimization technique maximizes exergy efficiency and minimizes hydrogen liquefaction cost. Evaporator and generator temperatures, solar direct beam irradiation, and cycle's high pressure are key decision variables. The sensitivity analysis highlights the substantial influence of cycle's high pressure on hydrogen liquefaction cost, as indicated by a sensitivity index of 0.486. The research calculates the best solution using TOPSIS decision-making, resulting in 50.22 % exergy efficiency and $1.366/kg hydrogen liquefaction cost. After conducting a thorough case study, it becomes evident that May is the most optimal month for liquid hydrogen production, payback period, and net profit. However, January has a high coefficient of performance and exergy efficiency and low liquid hydrogen production cost. The cheapest capital investment month is July. This complete study of the solar-driven hydrogen liquefaction system uncovers critical parameters and their effects, enabling hydrogen production efficiency and sustainability.

Keywords: Solar-driven hydrogen liquefaction; Multi-objective optimization; Exergoeconomic analysis; Claude cycle; Branched GAX cycle (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224032729
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:312:y:2024:i:c:s0360544224032729

DOI: 10.1016/j.energy.2024.133496

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224032729