Techno-economic analysis of power-to-heat-to-power plants: Mapping optimal combinations of thermal energy storage and power cycles
Salvatore Guccione and
Rafael Guedez
Energy, 2024, vol. 312, issue C
Abstract:
To enable the widespread exploitation of intermittent, low-cost, and non-dispatchable renewable energy technologies, energy storage plays a key role in providing the required flexibility. This study introduces maps of optimal combination of Thermal Energy Storage (TES) and power cycles, supporting decision-making in power-to-heat-to-power applications. These maps span a wide temperature range from 200 to 1200 °C and are proposed for different charging costs, installed capacities, and storage durations. For thermal-to-electricity reconversion, this study explores power blocks including steam Rankine cycle, supercritical CO2 (sCO2) Brayton cycle, Organic Rankine Cycle (ORC), and combined gas turbine with Rankine and sCO2. Results highlight that, in a grid-based plant with a 50 EUR/MWh charging cost, the most cost-effective pairing involves sCO2 cycles with recompression and intercooling, with particle TES at 600–800 °C. Air packed-bed suits scenarios where TES contributes significantly to capital costs or involves low charging costs. Molten salt TES is the optimal choice when the design temperatures align with salt temperature limitations. Particle TES proves cost-effective across a broad temperature range and scales (10–200 MW). For solar-based systems, the integration of molten salt TES with simple sCO2 recuperated cycles demonstrates market potential for southern European locations.
Keywords: Thermal energy storage; Power-to-heat-to-power; Electric heater; Particle; Packed bed; Molten salt; sCO2; ORC; Steam rankine; Combined cycles; Energy arbitrage (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224032766
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:312:y:2024:i:c:s0360544224032766
DOI: 10.1016/j.energy.2024.133500
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().