A novel heat load prediction model of district heating system based on hybrid whale optimization algorithm (WOA) and CNN-LSTM with attention mechanism
Xuyang Cui,
Junda Zhu,
Lifu Jia,
Jiahui Wang and
Yusen Wu
Energy, 2024, vol. 312, issue C
Abstract:
Machine learning models, particularly long short-term memory (LSTM) networks, have been extensively employed for heat load prediction in district heating systems (DHS). Nevertheless, the over-reliance on default hyperparameter settings in most methods hinders further enhancement of prediction accuracy. A novel load prediction model is presented, which integrates the whale optimization algorithm (WOA) to refine the hyperparameters of an LSTM model bolstered by an attention mechanism (ATT) and convolutional neural network (CNN). Three hybrid models (WOA-CNN-ATT-LSTM, PSO-CNN-ATT-LSTM and GA-CNN-ATT-LSTM) are constructed by comparing WOA with particle swarm optimization (PSO) and genetic algorithm (GA). The proposed hybrid models are evaluated against traditional LSTM models using an 1100-h dataset from a real DHS. The outcomes reveal that the WOA-CNN-ATT-LSTM model surpasses both the PSO-CNN-ATT-LSTM and GA-CNN-ATT-LSTM models in heat load prediction accuracy, achieving improvements of 1.9 % and 3.2 % respectively, and attaining the highest prediction accuracy (R2 = 0.9962, MSE = 0.0001, MAE = 0.0082). Moreover, the WOA-CNN-ATT-LSTM model demonstrates superior performance across various time scales (half-day, one-day, three-days, and one-week), highlighting its robustness in heat load prediction. This novel model adaptively adjusts its hyperparameters to identify the optimal configuration, thereby significantly augmenting the overall predictive capabilities of the model.
Keywords: District heating systems (DHS); Heat load prediction model; Whale optimization algorithm (WOA); Long short-term memory (LSTM); Convolution neural network (CNN); Attention mechanism (ATT) (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224033127
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:312:y:2024:i:c:s0360544224033127
DOI: 10.1016/j.energy.2024.133536
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().