Transient dynamic cycle evolution and thermodynamic performance analysis of a free-piston engine generator
Jiayu Wang,
Chang Liu,
Huihua Feng,
Boru Jia,
Zhiyuan Zhang and
Yidi Wei
Energy, 2024, vol. 313, issue C
Abstract:
The free-piston engine generator (FPEG) is a promising hybrid power system. Eliminating the crankshaft mechanism, it features a variable piston dynamic cycle distinct from traditional engines. This paper investigates transient dynamic evolutions, identifies the stable operation zone, and further analyzes thermodynamic performance under various key design parameters. First, a coupled dynamic-thermodynamic model is developed for FPEG. Second, transient dynamic evolutions from start-up to combustion-generation stage are analyzed. The boundaries of operating parameters are identified to ensure the presence of limit cycles for stable operation. Subsequently, the thermodynamic performance is comprehensively evaluated. The indicated power and thermal efficiency improve as load resistance and excess air ratio decrease. The maximum and minimum performance points consistently occur on the overshooting and damping lines, respectively. A lower piston assembly mass and higher design compression ratio are recommended to achieve higher indicated power and thermal efficiency. A lower stroke-to-bore ratio leads to higher indicated power with a slight decrease in thermal efficiency. Additionally, the load coefficient should be adjusted to ensure stable operation according to the design parameters. This paper enhances the understanding of transient dynamic evolutions of the FPEG and provides guidance for prototype design aimed at achieving stable operation and improved output performance.
Keywords: Free-piston engine; Linear generator; Dynamic evolution; Thermodynamic performance; Stable operation (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224034479
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:313:y:2024:i:c:s0360544224034479
DOI: 10.1016/j.energy.2024.133669
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().