EconPapers    
Economics at your fingertips  
 

Performance analysis of coupling vapor compression cycle to freeze and humidification-dehumidification based high-performance desalination

Trevor Hocksun Kwan, Ding Zhang, Ziyang Chen, Zhixin Liao, Zhuohang Zhang and Jiale Huang

Energy, 2024, vol. 313, issue C

Abstract: Although freeze desalination has a lower latent heat of ice formation (334 kJ/kg), its energy performance is still insufficient because of energy loss associated with not using the waste heat of the active cooling system. To address this challenge, this research introduces an innovative hybrid desalination system that synergistically combines freeze, humidification-dehumidification (HDH), and vapor compression cycle (VCC) technologies. The novelty of our approach lies in simultaneously leveraging the VCC's cooling and thermal energy for freeze and dehumidification processes, respectively, which greatly increases the desalination energy performance over only achieving freeze desalination. A thermodynamic model is developed to analyze the proposed system, and a series of parametric analyses are carried out to determine the system configuration that obtains the highest performance. Ultimately, a higher ice recovery rate of 20 % offers the best total desalination performance of only 63 Wh/kg. Furthermore, the HDH desalination unit can make up the for loss of freeze desalination performance at higher feed seawater temperatures, ensuring robust performance even under high-temperature conditions.

Keywords: Humidification dehumidification desalination; Freeze desalination; Hybrid system; Thermodynamic modeling; Vapor compression cycle (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224034753
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:313:y:2024:i:c:s0360544224034753

DOI: 10.1016/j.energy.2024.133697

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-05-25
Handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224034753