Assessment of trade-off, exergetic performance, and greenhouse gas impact-cost analysis of a diesel engine running with different proportions of TiO2, Ag2O, and CeO2 nanoadditives
Halil Erdi Gülcan,
Derviş Erol,
Mehmet Çelik and
Cihan Bayındırlı
Energy, 2024, vol. 313, issue C
Abstract:
In this study, the effects of adding different proportions of TiO2, Ag2O, and CeO2 nanoparticles to a three-cylinder, water-cooled, four-stroke, direct injection diesel engine on engine performance and exhaust emissions are experimentally investigated. The experiments are conducted at four different engine loads (10, 20, 30, and 40 Nm) and a constant engine speed (1800 rpm). TiO2, Ag2O, and CeO2 nanoparticles are added to the diesel fuel at concentrations of 50 and 75 ppm each. The test fuels used in the study are as follows: D100, DTi50, DTi75, DAg50, DAg75, DCe50 and DCe75. Using the experimental results, analyses of energy, exergy, sustainability, greenhouse gas (GHG) emission impact, and cost are performed. The experimental results reveal that the use of nanoparticles in diesel fuel reduces BSFC. The highest reduction in BSFC is achieved with DTi75 fuel, averaging 9 %. Additionally, DTi75 fuel shows an average increase of 19 % in NOx emissions compared to D100 fuel, while smoke emissions decrease by an average of 30 %. The highest average increase in exergy efficiency compared to D100 fuel is obtained with DAg50 fuel (5.6 %), followed by DTi75 fuel (5.3 %). The addition of nanoparticles to diesel fuel also leads to an increase in GHG emissions. Compared to D100 fuel, the highest average contribution to GHG emissions increase is shown by DTi75 fuel (12 %), while the lowest average contribution is observed with DAg50 fuel (4 %).
Keywords: Diesel fuel; Nanoparticle; Exergy analysis; Cost analysis; Greenhouse gas emission (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224035643
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:313:y:2024:i:c:s0360544224035643
DOI: 10.1016/j.energy.2024.133786
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().