Thermal performance analysis of a Trombe wall with the multi-row channel PCM wallboard
Yazi Li,
Yonggang Lei,
Yao Yan and
Chongfang Song
Energy, 2024, vol. 313, issue C
Abstract:
A novel Trombe wall with the multi-row channel phase change material wallboard (MCPCM-TW) is proposed to enhance the solar energy utilization. The structure contains the glazing, the heat-absorbing layer and the phase change thermal storage layer with several built-in channels, either aligned vertically or horizontally. The thermal performance of the Trombe walls, which consist of the multi-row vertical channel phase change material wallboard (V-MCPCM-TW) and the multi-row horizontal channel phase change material wallboard (H-MCPCM-TW), were investigated numerically in the present research. Meanwhile, the Trombe wall incorporating phase change thermal storage layer without built-in channels also studied in the paper. The results indicate that, the multi-row channel phase change material wallboard effectively enhances the heat storage and release of the phase change thermal storage layer, thereby extending the duration of ventilation and increasing the cumulative heat supply of the rooms equipped with the novel Trombe wall. Specifically, the V-MCPCM-TW has a higher maximum liquid volume fraction during the heat storage. Compared with the Trombe wall incorporating phase change thermal storage layer without built-in channels, the V-MCPCM-TW has a 16 % increase in maximum liquid volume fraction and a 15.5 % increase in cumulative heat supply within a certain period.
Keywords: Trombe wall; Thermal storage; Building energy consumption; Phase change material (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224035746
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:313:y:2024:i:c:s0360544224035746
DOI: 10.1016/j.energy.2024.133796
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().