EconPapers    
Economics at your fingertips  
 

Experimental study on transient characteristics and thermal stratification of high−pressure CO2 leakage under different initial density

Quan Zhang, Bin Qin, Naijun Zhou, Jingwen Lin, Jiaxu Hao and Zhaijun Lu

Energy, 2024, vol. 313, issue C

Abstract: Accidental leakage is one of the major safety issues in the carbon capture and storage project (CCS), which may pose a significant danger to pipelines, containers and surrounding crowd. It is necessary to study the leakage behavior of high−pressure CO2, providing data support for the risk assessment of CO2 leakage. In this paper, the accidental leakage of high−pressure CO2 is simulated by releasing CO2 from a storage tank, aiming to understand the transient characteristics and thermal stratification inside the tank of CO2 leakage process. The initial CO2 is at different initial density of 600∼1000 kg/m3 and at almost the same initial pressure of 10.8 ± 0.4 MPa. Firstly, the outlet transient characteristics and temperature evolution inside the tank are presented. Then, the variation of P−T curves and phase evolution are analyzed in detail. Finally, the leakage behavior under different initial density is described. The results show that the leakage process can be clearly divided into three stages based on the outlet pressure. The outlet pressure evolution, phase evolution and temperature distribution inside the tank are very different in these three stages. This research is of great significance for leakage risk prediction, early leakage detection and leakage hazard control.

Keywords: High−pressure CO2; Accidental release; Decompression; Phase transition (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224035795
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:313:y:2024:i:c:s0360544224035795

DOI: 10.1016/j.energy.2024.133801

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-05-25
Handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224035795