EconPapers    
Economics at your fingertips  
 

Optimization of submersible LNG centrifugal pump blades design based on support vector regression and the non-dominated sorting genetic algorithm Ⅱ

Pengfei Ma, Lei Li, Bin Wang, Haifeng Wang, Jun Yu, Liwei Liang, Chenyu Xie and Yiming Tang

Energy, 2024, vol. 313, issue C

Abstract: Optimizing the impeller blade design of submersible LNG centrifugal pump significantly enhances mechanical efficiency, reducing energy consumption and carbon emissions during LNG storage and transportation. This study focuses on optimizing blades of the centrifugal pump, combining Bezier blade design, CFD simulations, optimal Latin Hypercube sampling, Support Vector Regression (SVR), and Non-Dominated Sorting Genetic Algorithm II(NSGA-II) multi-objective optimization into a systematic method. During the development of this optimization method, it was found that directly applying sampled CFD simulation data for machine learning led to poor overall predictive performance of the models. To address this, a data augmentation method based on Gaussian noise was proposed. Through Bayesian optimization of the machine learning model's hyperparameters, the R2 of the predictive model was successfully increased from below 0.8 to above 0.99. The optimized design improved the prototype pump's efficiency from 70 % to 77.8 % under rated flow and head conditions. This efficiency gain is due to the significant reduction in flow separation vortices between blades and decreased turbulent kinetic energy between the impeller and diffuser vanes. Additionally, sensitivity and linear relationship analyses using the Sobol method and Pearson correlation provided valuable insights for blade optimization design.

Keywords: Pump optimization; Centrifugal pump; Computational fluid dynamics; Optimal design; Machine learning (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224035904
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:313:y:2024:i:c:s0360544224035904

DOI: 10.1016/j.energy.2024.133812

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-05-25
Handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224035904