Performance analysis of a novel multi-production design via the integration of medical waste plasma gasification and waste tire pyrolysis
Fangxu Gui,
Heng Chen,
Qiwei Zheng,
Huanlin Zhao,
Peiyuan Pan,
Jiayu Bian and
Zhiyong Yu
Energy, 2024, vol. 313, issue C
Abstract:
In the essay, a waste-to-energy system architecture consisting of plasma gasification, waste tire pyrolysis, gas turbine cycle, HRSG, and steam turbine cycle is proposed. In the hybrid configuration, the syngas from the conversion of medical waste in the plasma gasifier enters the combustion chamber for further utilization. Meanwhile, waste tires are subjected to pyrolysis reaction in the reactor, which produces pyrolysis carbon and pyrolysis oil that are valuable in the chemical industry, machinery, and energy, and selling them can bring significant economic benefits. The generated pyrolysis gas is conveyed to the combustion chamber, serving as the primary fuel source for the combustion process. The flue gas from combustion enters the gas-steam combined cycle and drives generators to produce electricity. An analysis of the thermodynamics and techno-economics of this hybrid configuration is conducted, leveraging simulation outcomes as a foundation. The thermodynamic assessment reveals an energy efficiency of 66.68 % and an exergy efficiency of 74.40 %, indicating substantial performance. The techno-economic evaluation underscores the viability of the scheme, with a swift dynamic payback period of 3.35 years and a positive net present value of 179295.12 k$. Collectively, these findings underscore the favorable nature of this novel design, both thermodynamically and economically.
Keywords: Multi-production process; System integration; Medical waste plasma gasification; Waste tire pyrolysis; Thermo-economic analysis (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224038027
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:313:y:2024:i:c:s0360544224038027
DOI: 10.1016/j.energy.2024.134024
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().