Refining hydropower operation by dynamic control of cascade reservoir water levels with flood season segmentation
Shaokun He,
BinBin Li,
Qianxun Li,
Hezhen Zheng and
Yingjian Chen
Energy, 2025, vol. 314, issue C
Abstract:
Flood limited water level (FLWL) is a critical factor in managing reservoir operations throughout the flood season. Given the growing need for renewable hydropower, there is an urgent need for new FLWL-centered policies to stimulate hydropower development. This study proposes a dynamic control framework for FLWL of cascade reservoirs based on the segmentation of the flood season (i.e., pre-flood, main flood and post-flood sub-seasons). Specifically, the dynamic control of reservoir water levels during the pre-flood and main flood sub-seasons is around seasonal FLWLs to balance flood control risk (FCR) and total hydropower generation (THG), while dynamic control of impoundment operation is implemented during the post-flood sub-season. A five-reservoir system in the Yangtze River basin was selected as a case study. The results illustrate that (1) our developed framework can offer decision-makers a balanced trade-off between FCR and THG; and (2) the optimal THG solution achieve a 3.16 % increase in hydropower generation with little increase in FCR compared to standard operating policy, while also delivering enhanced performance across other operational metrics, including impoundment efficiency. These insights are valuable for decision-makers in the Yangtze River basin and highlight the potential of dynamic control strategies for high-capacity reservoirs in other regions.
Keywords: Flood limited water level (FLWL); Cascade reservoirs; Dynamic control; Hydropower operation; Aggregation-decomposition; Flood season segmentation (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224039343
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:314:y:2025:i:c:s0360544224039343
DOI: 10.1016/j.energy.2024.134156
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().