Estimating the potential of power-to-heat (P2H) in 2050 energy system for the net-zero of South Korea
Taeyoung Jin
Energy, 2025, vol. 314, issue C
Abstract:
In response to the global climate crisis, South Korea has committed to achieving net-zero emissions by 2050, requiring a transformation of its energy system. This study explores the potential sector coupling between the power and heating sectors, referred to as power-to-heat (P2H) in South Korea's 2050 net-zero energy system. Using the open-source EnergyPLAN model, we simulated the future energy scenario with government-projected data and assumptions about energy infrastructure. EnergyPLAN effectively models interactions within systems where distribution is critical, such as electricity, heat, and gas. South Korea's net-zero scenario served as the baseline input, allowing us to assess feasibility and quantify P2H's role in supporting net-zero goals. Our findings suggest that by 2050, South Korea's projected infrastructure could lead to an overbuilt system, with electricity and heating capacities exceeding demand. Variable renewable energy (VRE) capacity is expected to surpass hourly needs, even with storage and sector coupling. Annually, electricity supply may exceed demand by about 89 TWh, with a target demand of 1257 TWh. In district heating, approximately 4.7 TWh of surplus VRE could be used by P2H, meeting only 14.5 % of heating demand, indicating limited absorption of the surplus. Sensitivity analyses on flexible resources, such as electricity and thermal storage, showed limited cost-effectiveness. Increasing wind power's share rather than solar PV is recommended to enhance net-zero feasibility, given South Korea's capacity factors.
Keywords: Sector coupling; Power-to-Heat; Energy system; Net-zero (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224039847
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:314:y:2025:i:c:s0360544224039847
DOI: 10.1016/j.energy.2024.134206
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().