High-speed flow and multiphase detonation of energetic mixture
Congliang Ye and
Qi Zhang
Energy, 2025, vol. 314, issue C
Abstract:
The high-speed large-scale flow of multiphase energetic fuel is complex, and its detonation process involves tremendous explosive power, making it difficult to observe the details and mechanisms. To address this issue, a systematic study was conducted through simulations. The distribution pattern of particle size and Reynolds number in the high-speed multiphase flow field was revealed, showing an overall ring-shaped incremental distribution from the inner to outer region. Moreover, the reaction mechanism of high-speed multiphase detonation was analyzed, and the dynamic characteristics of the flame were studied. It was found that the residual fuel continued to burn and diffuse with the high-temperature products, resulting in multiple combustion-explosion phenomena. Furthermore, the propagation of shock waves and the development of Mach waves in high-speed cloud detonation were investigated. Subsequently, the coupling behavior between high-speed multiphase detonation shock wave and high-temperature flow was revealed, with the detonation wavefronts decoupling first at the top of the cloud and the radial detonation wave gradually decoupling as it propagated toward the cloud edge, while the axial detonation wave continued to propagate to the ground without decoupling. Overall, these findings enhance the understanding of energy utilization and the prevention of combustible cloud explosions involving such flow and detonation.
Keywords: High-speed flow; Multiphase detonation; Energetic fuel; Flame; Shock wave; High-temperature flow (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224040167
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:314:y:2025:i:c:s0360544224040167
DOI: 10.1016/j.energy.2024.134238
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().