EconPapers    
Economics at your fingertips  
 

Improved 3D hybrid thermal model for global temperature distribution prediction of interior permanent magnet synchronous motor

Feng Liu, Xiuhe Wang, Lingling Sun, Hongye Wei, Changbin Li and Jie Ren

Energy, 2025, vol. 315, issue C

Abstract: Aiming at preventing many undesirable consequences caused by excessive temperature rise, improving the thermal management capability of interior permanent magnet synchronous motor (IPMSM), and promoting the prosperous development of IPMSM in the field of transportation electrification, this article carries out an innovative research around the highly efficient, accurate, and practical temperature prediction technique. An improved three-dimensional hybrid thermal model (3D HTM) is proposed for the fast and exact prediction of the global temperature distribution of IPMSM. First of all, to adequately account for the complex structure of IPMSM in 3D space, the equivalent thermal region is reasonably subdivided by starting from the x-y plane and the cross-section in the z-axis direction, respectively. Next, on the basis of the partial differential equation of the heat flux, the general solution for the associated temperature distribution function is derived by reference to the specific distribution characteristic of the equivalent thermal region. Afterwards, the boundary condition is deduced depending upon the interface feature between neighboring equivalent thermal regions. And further, the smooth construction and solution of 3D HTM is accomplished by incorporating the finite element analysis, lumped parameter thermal network, and iterative strategy. Thereby, the prediction of the global temperature distribution of IPMSM under various complex operating conditions is successfully realized without being constrained by the operating scenarios. Meanwhile, 3D HTM possesses very impressive prediction speed and accuracy. In particular, compared to the currently popular numerical analysis tool (computational fluid dynamics, CFD), nearly 70.00 % or more of the prediction cost, including time cost and storage cost, is saved; moreover, the prediction difference consistently stays below 4.00 %, both for the temperature variation on the comparison path and for the maximum temperatures of critical elements. Ultimately, the validity, sophistication, and practicality of this research are strongly validated by simulation calculation, comparative analysis, and prototype experiment.

Keywords: 3D space; Complex structure; Equivalent thermal region; Fast and exact prediction; Global temperature distribution; Interior; Permanent magnet synchronous motor (IPMSM); Three-dimensional hybrid thermal model (3D HTM) (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224040489
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:315:y:2025:i:c:s0360544224040489

DOI: 10.1016/j.energy.2024.134270

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:315:y:2025:i:c:s0360544224040489