EconPapers    
Economics at your fingertips  
 

Development and assessment of a nuclear-based hydrogen production facility operated on a boron-based magnesium chloride cycle

Sulenur Asal, Adem Acır and Ibrahim Dincer

Energy, 2025, vol. 316, issue C

Abstract: This present study aims to develop a newly integrated energy system with three different sub-systems, including an open feedwater Rankine cycle and hydrogen production cycle. The proposed system is considered to be driven by pebble bed modular nuclear reactor, where each twin reactor can generate 400.00 MWth heat at 750°C. Within the scope of the proposed study, the boron-based magnesium chloride cycle is investigated as a hydrogen production method. The proposed system is analyzed with energy and exergy approaches, using the first and second laws of thermodynamics. The boron-based magnesium chloride cycle sub-system is simulated via the Aspen Plus software. According to the calculations, while the highest exergy destruction value belongs to the electrolyser with an amount of 1506.90 MW, the chlorination reactor has the lowest exergy destruction value with an amount of 36.05 MW for the boron-based magnesium chloride cycle. The hydrogen production cycle's energy and exergy efficiencies are calculated as 50.69% and 49.47%, respectively. The hydrogen production amount of the proposed system is assessed as 0.66 kg/s. The energy efficiency of the overall system is 35.46%, while the exergy efficiency is calculated as 36.56%.

Keywords: Nuclear hydrogen; Hydrogen production; Boron-based Mg-Cl cycle; Energy; Exergy; Efficiency; Sustainability (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422500088X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:316:y:2025:i:c:s036054422500088x

DOI: 10.1016/j.energy.2025.134446

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:316:y:2025:i:c:s036054422500088x