Data-driven approach to estimate urban heat island impacts on building energy consumption
Alireza Attarhay Tehrani,
Saeideh Sobhaninia,
Niloofar Nikookar,
Ronnen Levinson,
David J. Sailor and
Deepak Amaripadath
Energy, 2025, vol. 316, issue C
Abstract:
Urban heat island effects can significantly increase building energy consumption. Assessing the impact of the urban heat island on building energy use is challenging due to temperature variations. Scalable building models and cooling energy consumption data are essential for accurate load demand predictions. This paper presents a data-driven method to predict cooling load intensity (heat removed per unit floor area to maintain the setpoint in conditioned spaces), under urban heat island conditions in residential buildings in Phoenix, Arizona, using a synthetic dataset of 27,681 buildings. The approach incorporates physics-based parametric modeling using building geometrical features, urban heat island intensity simulation through the Urban Weather Generator, and cooling load intensity estimation via EnergyPlus and OpenStudio. Machine learning models, including Extreme Gradient Boosting, Gaussian Process Regression, Random Forest, Support Vector Regression, and Deep Neural Networks, are employed for cooling load predictions. Urban building energy performance analysis indicates that the Deep Neural Network model performs best in estimating cooling load intensity, achieving a high coefficient of determination of 0.98. These findings support informed decision-making to enhance building energy efficiency, reduce consumption, and facilitate large-scale smart city planning.
Keywords: Cooling load intensity; Urban heat island; Energy management; Machine learning; Energy consumption; Energy efficiency (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544225001501
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:316:y:2025:i:c:s0360544225001501
DOI: 10.1016/j.energy.2025.134508
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().